generalized principal ideal theorem for modules
نویسندگان
چکیده
the generalized principal ideal theorem is one of the cornerstones of dimension theory for noetherian rings. for an r-module m, we identify certain submodules of m that play a role analogous to that of prime ideals in the ring r. using this definition, we extend the generalized principal ideal theorem to modules.
منابع مشابه
GENERALIZED PRINCIPAL IDEAL THEOREM FOR MODULES
The Generalized Principal Ideal Theorem is one of the cornerstones of dimension theory for Noetherian rings. For an R-module M, we identify certain submodules of M that play a role analogous to that of prime ideals in the ring R. Using this definition, we extend the Generalized Principal Ideal Theorem to modules.
متن کاملA Generalized Principal Ideal Theorem
KrulΓs principal ideal theorm [Krull] states that q elements in the maximal ideal of a local noetherian ring generate an ideal whose minimal components are all of height at most q. Writing R for the ring, we may consider the q elements, x19 , xq say, as coordinates of an element xeR. It is an easy observation that every homomorphism R —> R carries x to an element of the ideal generated by xi9 ,...
متن کاملOn the generalized principal ideal theorem of complex multiplication
In the p-th cyclotomic field Qpn , p a prime number, n ∈ N, the prime p is totally ramified and the only ideal above p is generated by ωn = ζpn − 1, with the primitive p-th root of unity ζpn = e 2πi pn . Moreover these numbers represent a norm coherent set, i.e. NQpn+1/Qpn(ωn+1) = ωn. It is the aim of this article to establish a similar result for the ray class field Kpn of conductor p over an ...
متن کاملWhitehead Modules over Large Principal Ideal Domains
We consider the Whitehead problem for principal ideal domains of large size. It is proved, in ZFC, that some p.i.d.’s of size ≥ א2 have nonfree Whitehead modules even though they are not complete discrete valuation rings. A module M is a Whitehead module if ExtR(M,R) = 0. The second author proved that the problem of whether every Whitehead Z-module is free is independent of ZFC + GCH (cf. [5], ...
متن کامل(C, A)-Invariance of Modules over Principal Ideal Domains
For discrete-time linear systems over a principal ideal domain three types of (C;A)-invariance can be distinguished. Connections between these notions are investigated. For pure submodules necessary and su cient conditions for dynamic (C;A)-injection invariance are given. Su cient conditions are obtained in the general case. Mathematical Subject Classi cations (1991): 93B07, 93B99, 15A33, 13C99
متن کاملFinitely-generated modules over a principal ideal domain
Let R be a commutative ring throughout. Usually R will be an integral domain and even a principal ideal domain, but these assumptions will be made explicitly. Since R is commutative, there is no distinction between left, right and 2-sided ideals. In particular, for every ideal I we have a quotient ring R/I. F always denotes a field. Our goal is to prove the classification theorem for finitely-g...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
journal of algebraic systemsناشر: shahrood university of technology
ISSN 2345-5128
دوره 3
شماره 1 2015
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023